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Probability distribution of m-branch subsets in diffusion-limited aggregation
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This is an attempt to redefima-branch subsets in off-lattice two-dimensional diffusion-limited aggregation
simulations, wheren is the number of particles of a branch which lacks a hierarchy of order. In our simula-
tions, the total number of aggregated partide®ehaves adl=(2R)P, whereR is the radius of gyration of
the cluster andD is the fractal dimension. The number af-branch subsetd(R) depends omR as
M,(R)=A,RP and the subsets af-dimensional self-similar fractals. These results show that the probability
distribution of the subsets is stable, and has a peak=a2, and that the subset at=2 is the most observable
of all the subsets independent of tinj81063-651X98)04705-9

PACS numbd(s): 61.43.Hv, 05.45tb

INTRODUCTION fractal patterns created by iterated contraction map with mul-
. . . . .. tiscaling factord11]. Each branch has the probability mea-
Since t_he_ notation of a fractal was cor_ltnv_ed, Its l:)e"’mt'fu'sure dgfined as its length to the total Iengrih of theypattern.
characteristics have fascinated many scienfBIsNot only e yrohapility decays exponentially with iteration time, and
mathemaucal and geometrical mo_dels,_ but glso many objgct[ﬁe subset which has the same decay exponent is a self-
in nature such as clouds, mountains, lightning, and galaxiegmilar fractal. The maximum value of the fractal dimensions
reveal their fractals. An understanding of the physical origingf g the subsets coincides with the similarity dimension of
and the mechanism of fractals, however, is not so simple ifhe pattern. Furthermore, by considering the increasing ex-
many cases despite their clear appearance. This is owing onent of the number of branches in the subset, topological
their complicated systems. entropy has been calculated. Then an entropy spectrum from
Among those systems, DLAdiffusion-limited aggrega- the above two exponents has been obtained; but that of DLA
tion) is relatively simple because the only thing that counts ishas not yet been reported on. In order to study the dynamical
its diffusion field. Since the simulation by Witten and Sanderbranching structures of DLA such as the entropy spectrum,
[2], DLA has been vigorously investigated by means of com-we report in this paper on branching structures of DLA
puter simulations, theoretical analysis, and experimgsits ~ which lack any ordered hierarchy.
Many investigations have been reported relating to the frac-
tal dimension, generalized dimensiffna spectrum, anisot-
ropy of the simulated lattice, irregularly branched structures, SIMULATIONS
and morphological transitions among the other observable The algorithms in our off-lattice two-dimensional DLA
clusters in the diffusion field. An understanding of these hagjmulations are similar to those in R¢L2], except for the

revealed the physical mechanism of the long ranged selfjight distance of a random walkel= d i, —kl, whered,, is
similarity and the determination of the fractal dimension.

Several theoretical approaches have been introduced, for ex-
ample, mean-field approaches, field theories, real-spaci
renormalization group, fixed-scale transformation, and dy- 10° |-
namical analysis between branchd$ -

In spite of the achievement of such approaches, many s
problems remain. We focus on the branching structures of 10” =
DLA. Studies of these structures have usually been based o
a hierarchy of branch orders relating to the Horton-Strahler
ordering[5,6]. It has been reported that the bifurcation ratio
and the length ratio are constants, and that the similarity
dimension estimated from the two ratios is nearly identical 103 A=3.213+0.001 _
with the fractal dimension of the DLA cluster itsglf—9]. - D=1.71337+0.00006
Other ordered branching structures have been recently re

o . . 2 , | ) |

ported, and it is argued that the maximum entropy formalism 10 3
in equilibrium statistical physics derives from the branching R 10
distribution[10].

On the other hand, the branching structures are not limited FIG. 1. Radius of gyratioR vs particle numbeN. The relation
to ordered branches. Dynamical branching structures withowl=ARP is written as N=(2R)®; A=3.213+0.001 and D
any ordered hierarchy have been studied about self-similaf 1.713 37 0.000 06.

N=ARP
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FIG. 2. Definition of them branch. The numbering begins from (a) m
a bifurcated particle. Type (open circley has a tip, and type Il
(hatched circleshas no tip. 10° ———— T
 ®¢ X : R=28.523 -
A : R=55.82
- [= R=10943(6)5 —
the distance from a random walker to the closest aggregated 10° = j AR
particle, k representing some factor, ahtdeing the diameter _ N * : R=820504
of the particle. The simulation can be carried out exactly % O : R=1607.789
whenk is unity, although it takes much time. This occurs = — .
very rarely, however, because it is a point contact. In the 10° M(m)<RP2 Texp(-0.684m) _
simulations of Ref[12], k is chosen as 0.8, and the aggre- | R=1607.78§ ' _
gated particles are permitted to overlap. In their simulations, | D-1.71337 A
overlapped portions decrease as the cluster size increases. N .
We usek as 0.995, and modify the positions of the newly 10 0 10 20 30
aggregated particles so that they do not overlap. Wken (b) m
goes from 0.8 to unity, the fractal dimensi@nshows little
change but the coefficiet (N=ARP, whereN is the total 10° N
number of aggregated particles aRds the radius of gyra- Qgé O:type I
. : 4 A g o:type 1I
tion) changes slightly and approaches some value. ggé g@g Atotal
3 Ay g éA 3 ad 105 106
N=10,10%10%,10
RESULTS AND DISCUSSION g 2@ggg@gé§@éA
i - , : Z 8 A B2 7
We simulated\,, off-lattice two-dimensional DLA clus- = 10' é@ggg@éié @ A° 8 44 |
ters of N particles atk=0.995, whereN,,=1.2x 10° for N . ééAé@AgééAOéA
=10%, N, =2x10 for 1259<N=<10%, N,=2x10" for 107 = ééAQSSAQSAO@,é-
12 589<N=<10°, and N,,=2x10° for 125 893<N=<10’. 10 %AAQSAO% 4
We used 31 different values of from 10° to 1. N Dqémc’ég 1 éé
In Fig. 1, we show the relatioN=ARP. Since these data 10 0 10 20
are fromN,, clusters for fixed\ particles,R is the average (c) m

value. To the best of our knowledge, the vali2
=1.713 370.000 06 coincides with the reported results
[13], though we know of no reports about the valuefof
The result ofA=3.213+0.001 implies that we can pud

FIG. 3. (8 Branching distributions for seven cluster sizes.
Mg(m) is averaged and can be smaller than uftitye dashed line is
Mgr(m)=1]. (b) Scaled Mg(m) to cluster sizeR=1607.789.

- D _ - : - Mg(m) decays exponentially for largen. (c) Detailed branching
- (Z.R) pecguse 2=3.279=A. Strictly speaking, the line distributions for varioudN. The distribution of types | and Il is also
in Fig. 1 is slightly curved. Then, for larg&, the values of 4

A and D become larger and smaller, respectively. We be-

lieve that for a larger DLA cluster &= 1, the above relation

might hold exactly. The relation represents the definition of

the self-similar fractal, and the valudids recognized as the [15], and that of the frozen zone is about [16], the ratio is
size of the cluster measured with the minimum scogiee  larger than the homogeneous case. Thus the mechanism of
particle diameter is equal to).1However, R does not cor- the above relation is an open question at present. It is clear,
respond to, and in fact is less than, the DLA size. In generalhowever, that the valueR corresponds to the cluster size if
the radius of gyration of th®.-dimensional homogeneous N particles form a complete self-similar fractal cluster whose
fractal cluster is smaller than the radius of the cluster, and thdimension isD.

ratio is 1A/’1+2/D. in two-dimensional space. Furthermore,  Now we have divided the DLA cluster intm-branch sub-

the outer region of the DLA clustéan active zonedoes not  sets Sg(m). We characterize a branch as, the particle
completeD -dimensional self-similar formatiop—16. Con-  number of the branchFig. 2). There are two types of
sidering that the dimension of the active zone is about 0.®ranches; branches with a fifype I), and branches without
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FIG. 4. The increase of somm-branch subsets. All of the sub- FIG. 5. Probability distribution ofm-branch subsets. Seven
sets areD- dimensional fractals. kinds of symbols used in Fig.(8 are overlapped. The inset is for

semilog plots. The distribution is almost stable.

a tip (type 1), as shown in Fig. 2. Branches of type | can simulatedP(l;m), and our results indicate that decreasing
grow longer, but those of type Il splibifurcate only. terms are nearly compensated for by the tip growing behav-
In Fig. 3(@), we show the number afn-branch subsets jor. We will report on the detailed branching dynamics re-
Mg(m) for various values oR. Since the data are fdd,,  |ated toP(I;m) elsewhere.
clustersMg(m) is the average value and can be smaller than |n Fig. 4, we show th& dependence of the number of the
unity. The branching of DLA consists mainly of one-particle m-pranch subseM,(R), which increases wit/RP(™. As
branches, ang(m) decreases an becomes larger. Asthe the value of D(m) is limited from 1.712 th=1) to
cluster grows larger, longer branches appear in turn. Thig 733 m=20), we can conclude th@(m) is equal toD.
behavior suggests that plural contraction rates exist in DLAThen we can puM (R)=A,,RP. This result indicates that
in the sense of a contraction map. In the case of a contractioe DLA cluster is composed ofi-branch self-similar sub-
map with a fixed contraction rate, only one new Size appearsets whose dimension is the same as that of the DLA itself.
when the pattern grows. In contraction maps with plural conas mentioned above, in studies with a hierarchy of order,
traction rateS, both the numbermfbranches and the kind of there are some Sca”ng results. Note, however, that our

branches exponentially increase to the iteration fifid. In 1 pranch subset is defined without such an ordering, and
the case of DLA, however, the number of branches in- jndicates that the scaling exponentds

creases exponentially, but the appearance rate of the kind of Tjs result also implies that the probability distribution of
m branch is smaller if we suppose that the DLA time iS m-pranch subsetsPg(m) is stable becausePg(m)
In(R). This difference may yield a delicate COffeSPO_nden_Ce:mMR(m)/NR:mArnRD/ARD:mAmm. In order to con-
b_etw_een the contraction map and DLA. The branchlng diSfirm the result, we show the probability distributid(m)
tributions are scaled, and we show the scaled plots in thgy seven different cluster sizes in Fig. 5. The cluster sizes
case of R=1607.789 N=1C°) in Fig. 3b); Mr(M)  and the symbols are the same as those in R, and the
=(Nr/Ng)Mg(m)=(R/R))°Mg (m), where R; is for insetis for semilog plots. The data are almost coincident. In
other clusters. For largan (m=10) Mr(m) decays expo- this distribution, there appears smalleg(m) of larger m
nentially [the line in Fig. 3b)], whereas for smallem its  with increasingR. Strictly speakingPg(m) of a smallerm
behavior is not so simple. In Fig(8, we also showM(m)’s  changes in the presence Bk(m) of a new largem. How-

of types | and Il, and total branches for=10°, 10%, 1, ever, Pr(m) of a smallerm is hardly influenced, because
and 16 clusters. The distributions of type-I and -1l branchesPr(m) of a largerm is much smaller. IndeedP(2) is

are also scaled. In the caserf= 1, the number of branches 0.207 435 andP(20) is 2.03< 10 ° at R=1607.789.Pr(m)

of type | is larger than that of type Il. The opposite is true if has its maximum value ah=2. From this result it appears

m is from 2 to about 16. Both are almost the samerfor that there might exist a “characteristic lengti=2" con-
=16. This complicated behavior might be understood in therary to fractal DLA. However,Pg(m) corresponds to the
light of the branching dynamics of DLA. By considering the probability of anm-branch subset, and the maximurg(m)
sticking probability of a random walker at the(integedth  means the most observatiler remarkable m-branch subset
aggregated particle in am branchP(l;m), we can discuss in the cluster. In the case of a contraction naf], such a
the branching dynamicsMg(m) can be represented by subset is obtained for fixedn, wheren is iteration time and
P(I;m). For exampleMg(m) for a type-I branch excluding k is some integer: &k<n. This implies that the most ob-
m=1 has increasing terms and decreasing terms. The irservable branch in real space changes in time, and that only
creasing terms are related to tip-growing behavitim  such a subset remains when the time is infinity. Such a sub-
—1;m—1), and branch-splitting behavio®(m;m+k) and  set of DLA, though, does not depend on time. We will report
P(k;m+k) (k=1,2,...). On theother hand, the decreasing in a future thesis on the most observable subset @) fo-
terms are related tdP(k;m) (k=1,2,...m). We have cusing on entropy spectrum of DLA.
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CONCLUSION pendently of the cluster size, and their probability distribu-
tion is stable.

In conclusion, from the two-dimensional off-lattice DLA ACKNOWLEDGMENTS
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