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Probability distribution of m-branch subsets in diffusion-limited aggregation
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~Received 2 June 1997; revised manuscript received 21 November 1997!

This is an attempt to redefinem-branch subsets in off-lattice two-dimensional diffusion-limited aggregation
simulations, wherem is the number of particles of a branch which lacks a hierarchy of order. In our simula-
tions, the total number of aggregated particlesN behaves asN5(2R)D, whereR is the radius of gyration of
the cluster andD is the fractal dimension. The number ofm-branch subsetsMm(R) depends onR as
Mm(R)5AmRD and the subsets areD-dimensional self-similar fractals. These results show that the probability
distribution of the subsets is stable, and has a peak atm52, and that the subset atm52 is the most observable
of all the subsets independent of time.@S1063-651X~98!04705-9#

PACS number~s!: 61.43.Hv, 05.45.1b
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INTRODUCTION

Since the notation of a fractal was contrived, its beaut
characteristics have fascinated many scientists@1#. Not only
mathematical and geometrical models, but also many obj
in nature such as clouds, mountains, lightning, and galax
reveal their fractals. An understanding of the physical ori
and the mechanism of fractals, however, is not so simpl
many cases despite their clear appearance. This is owin
their complicated systems.

Among those systems, DLA~diffusion-limited aggrega-
tion! is relatively simple because the only thing that counts
its diffusion field. Since the simulation by Witten and Sand
@2#, DLA has been vigorously investigated by means of co
puter simulations, theoretical analysis, and experiments@3#.
Many investigations have been reported relating to the fr
tal dimension, generalized dimension~f -a spectrum!, anisot-
ropy of the simulated lattice, irregularly branched structur
and morphological transitions among the other observa
clusters in the diffusion field. An understanding of these h
revealed the physical mechanism of the long ranged s
similarity and the determination of the fractal dimensio
Several theoretical approaches have been introduced, fo
ample, mean-field approaches, field theories, real-sp
renormalization group, fixed-scale transformation, and
namical analysis between branches@4#.

In spite of the achievement of such approaches, m
problems remain. We focus on the branching structures
DLA. Studies of these structures have usually been base
a hierarchy of branch orders relating to the Horton-Strah
ordering@5,6#. It has been reported that the bifurcation ra
and the length ratio are constants, and that the simila
dimension estimated from the two ratios is nearly identi
with the fractal dimension of the DLA cluster itself@7–9#.
Other ordered branching structures have been recently
ported, and it is argued that the maximum entropy formali
in equilibrium statistical physics derives from the branchi
distribution @10#.

On the other hand, the branching structures are not lim
to ordered branches. Dynamical branching structures with
any ordered hierarchy have been studied about self-sim
571063-651X/98/57~5!/6202~4!/$15.00
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fractal patterns created by iterated contraction map with m
tiscaling factors@11#. Each branch has the probability me
sure defined as its length to the total length of the patte
The probability decays exponentially with iteration time, a
the subset which has the same decay exponent is a
similar fractal. The maximum value of the fractal dimensio
of all the subsets coincides with the similarity dimension
the pattern. Furthermore, by considering the increasing
ponent of the number of branches in the subset, topolog
entropy has been calculated. Then an entropy spectrum f
the above two exponents has been obtained; but that of D
has not yet been reported on. In order to study the dynam
branching structures of DLA such as the entropy spectru
we report in this paper on branching structures of DL
which lack any ordered hierarchy.

SIMULATIONS

The algorithms in our off-lattice two-dimensional DLA
simulations are similar to those in Ref.@12#, except for the
flight distance of a random walkerd5dmin2kl, wheredmin is

FIG. 1. Radius of gyrationR vs particle numberN. The relation
N5ARD is written as N5(2R)D; A53.21360.001 and D
51.713 3760.000 06.
6202 © 1998 The American Physical Society
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57 6203BRIEF REPORTS
the distance from a random walker to the closest aggreg
particle,k representing some factor, andl being the diameter
of the particle. The simulation can be carried out exac
when k is unity, although it takes much time. This occu
very rarely, however, because it is a point contact. In
simulations of Ref.@12#, k is chosen as 0.8, and the aggr
gated particles are permitted to overlap. In their simulatio
overlapped portions decrease as the cluster size incre
We usek as 0.995, and modify the positions of the new
aggregated particles so that they do not overlap. Whek
goes from 0.8 to unity, the fractal dimensionD shows little
change but the coefficientA ~N5ARD, whereN is the total
number of aggregated particles andR is the radius of gyra-
tion! changes slightly and approaches some value.

RESULTS AND DISCUSSION

We simulatedNav off-lattice two-dimensional DLA clus-
ters of N particles atk50.995, whereNav51.23106 for N
5103, Nav523105 for 1259<N<104, Nav523104 for
12 589<N<105, and Nav523103 for 125 893<N<106.
We used 31 different values ofN from 103 to 106.

In Fig. 1, we show the relationN5ARD. Since these data
are fromNav clusters for fixedN particles,R is the average
value. To the best of our knowledge, the valueD
51.713 3760.000 06 coincides with the reported resu
@13#, though we know of no reports about the value ofA.
The result ofA53.21360.001 implies that we can putN
5(2R)D because 2D53.279>A. Strictly speaking, the line
in Fig. 1 is slightly curved. Then, for largerR, the values of
A and D become larger and smaller, respectively. We
lieve that for a larger DLA cluster atk51, the above relation
might hold exactly. The relation represents the definition
the self-similar fractal, and the value 2R is recognized as the
size of the cluster measured with the minimum scale~the
particle diameter is equal to 1!. However, 2R does not cor-
respond to, and in fact is less than, the DLA size. In gene
the radius of gyration of theDc-dimensional homogeneou
fractal cluster is smaller than the radius of the cluster, and
ratio is 1/A112/Dc in two-dimensional space. Furthermor
the outer region of the DLA cluster~an active zone! does not
completeD-dimensional self-similar formation@4–16#. Con-
sidering that the dimension of the active zone is about

FIG. 2. Definition of them branch. The numbering begins from
a bifurcated particle. Type I~open circles! has a tip, and type II
~hatched circles! has no tip.
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@15#, and that of the frozen zone is about 1.6@16#, the ratio is
larger than the homogeneous case. Thus the mechanis
the above relation is an open question at present. It is cl
however, that the value 2R corresponds to the cluster size
N particles form a complete self-similar fractal cluster who
dimension isD.

Now we have divided the DLA cluster intom-branch sub-
sets SR(m). We characterize a branch asm, the particle
number of the branch~Fig. 2!. There are two types o
branches; branches with a tip~type I!, and branches withou

FIG. 3. ~a! Branching distributions for seven cluster size
MR(m) is averaged and can be smaller than unity@the dashed line is
MR(m)51#. ~b! Scaled MR(m) to cluster sizeR51607.789.
MR(m) decays exponentially for largerm. ~c! Detailed branching
distributions for variousN. The distribution of types I and II is also
scaled.
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6204 57BRIEF REPORTS
a tip ~type II!, as shown in Fig. 2. Branches of type I ca
grow longer, but those of type II split~bifurcate! only.

In Fig. 3~a!, we show the number ofm-branch subsets
MR(m) for various values ofR. Since the data are forNav
clusters,MR(m) is the average value and can be smaller th
unity. The branching of DLA consists mainly of one-partic
branches, andMR(m) decreases asm becomes larger. As the
cluster grows larger, longer branches appear in turn. T
behavior suggests that plural contraction rates exist in D
in the sense of a contraction map. In the case of a contrac
map with a fixed contraction rate, only one new size appe
when the pattern grows. In contraction maps with plural c
traction rates, both the number ofm branches and the kind o
branches exponentially increase to the iteration time@11#. In
the case of DLA, however, the number ofm branches in-
creases exponentially, but the appearance rate of the kin
m branch is smaller if we suppose that the DLA time
ln(R). This difference may yield a delicate corresponden
between the contraction map and DLA. The branching d
tributions are scaled, and we show the scaled plots in
case of R51607.789 (N5106) in Fig. 3~b!; MR(m)
5(NR /NRi

)MRi
(m)5(R/Ri)

DMRi
(m), where Ri is for

other clusters. For largerm (m>10) MR(m) decays expo-
nentially @the line in Fig. 3~b!#, whereas for smallerm its
behavior is not so simple. In Fig. 3~c!, we also showM (m)’s
of types I and II, and total branches forN5103, 104, 105,
and 106 clusters. The distributions of type-I and -II branch
are also scaled. In the case ofm51, the number of branche
of type I is larger than that of type II. The opposite is true
m is from 2 to about 16. Both are almost the same form
>16. This complicated behavior might be understood in
light of the branching dynamics of DLA. By considering th
sticking probability of a random walker at thel ~integer!th
aggregated particle in anm branchP( l ;m), we can discuss
the branching dynamics.MR(m) can be represented b
P( l ;m). For example,MR(m) for a type-I branch excluding
m51 has increasing terms and decreasing terms. The
creasing terms are related to tip-growing behaviorP(m
21;m21), and branch-splitting behaviorsP(m;m1k) and
P(k;m1k) (k51,2, . . . ). On theother hand, the decreasin
terms are related toP(k;m) (k51,2, . . . ,m). We have

FIG. 4. The increase of somem-branch subsets. All of the sub
sets areD- dimensional fractals.
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simulatedP( l ;m), and our results indicate that decreasi
terms are nearly compensated for by the tip growing beh
ior. We will report on the detailed branching dynamics r
lated toP( l ;m) elsewhere.

In Fig. 4, we show theR dependence of the number of th
m-branch subsetM m(R), which increases withRD(m). As
the value of D(m) is limited from 1.712 (m51) to
1.733 (m520), we can conclude thatD(m) is equal toD.
Then we can putMm(R)5AmRD. This result indicates tha
the DLA cluster is composed ofm-branch self-similar sub-
sets whose dimension is the same as that of the DLA its
As mentioned above, in studies with a hierarchy of ord
there are some scaling results. Note, however, that
m-branch subset is defined without such an ordering,
indicates that the scaling exponent isD.

This result also implies that the probability distribution
m-branch subsetsPR(m) is stable becausePR(m)
5mMR(m)/NR5mAmRD/ARD5mAm /A. In order to con-
firm the result, we show the probability distributionPR(m)
for seven different cluster sizes in Fig. 5. The cluster si
and the symbols are the same as those in Fig. 3~a!, and the
inset is for semilog plots. The data are almost coincident
this distribution, there appears smallerPR(m) of larger m
with increasingR. Strictly speaking,PR(m) of a smallerm
changes in the presence ofPR(m) of a new largerm. How-
ever, PR(m) of a smallerm is hardly influenced, becaus
PR(m) of a larger m is much smaller. Indeed,P(2) is
0.207 435 andP(20) is 2.0331025 at R51607.789.PR(m)
has its maximum value atm52. From this result it appear
that there might exist a ‘‘characteristic lengthm52’’ con-
trary to fractal DLA. However,PR(m) corresponds to the
probability of anm-branch subset, and the maximumPR(m)
means the most observable~or remarkable! m-branch subset
in the cluster. In the case of a contraction map@11#, such a
subset is obtained for fixedk/n, wheren is iteration time and
k is some integer: 0<k<n. This implies that the most ob
servable branch in real space changes in time, and that
such a subset remains when the time is infinity. Such a s
set of DLA, though, does not depend on time. We will rep
in a future thesis on the most observable subset (m52) fo-
cusing on entropy spectrum of DLA.

FIG. 5. Probability distribution ofm-branch subsets. Seve
kinds of symbols used in Fig. 3~a! are overlapped. The inset is fo
semilog plots. The distribution is almost stable.
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CONCLUSION

In conclusion, from the two-dimensional off-lattice DLA
simulation atk50.995, we have found the following.~i! The
relationN5(2R)D holds.~ii ! We can redefine anm-branch
subset without a hierarchy of order. A DLA cluster is com
posed of many self-similarm-branch subsets whose dime
sions have the same values as the DLA cluster.~iii ! In such
subsets, the most observable subset arises whenm52 inde-
.

ys
pendently of the cluster size, and their probability distrib
tion is stable.
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